Memory Systems Overview
Q-Memory System Architecture
Section titled “Q-Memory System Architecture”Q-Memory is a hybrid memory system optimized for quantum ML parameter storage, combining different technologies.
Competitive Positioning
Section titled “Competitive Positioning”| System | Storage/Cell | Technology | Endurance | Q-Store Use Case |
|---|---|---|---|---|
| SSD (Zarr) | 32 bits/param | NAND | 10⁵ writes | Default backend |
| DRAM | 1 bit | Volatile | Unlimited | Not persistent |
| Phase 0 | 5 bits | Q-memory Base | 10⁹ | Small models |
| Phase 1 | 10.4 bits | Q-memory tech | 5×10⁷ | Medium models |
| Phase 2 | 10.4 bits | Q-memory tech | 10⁹ | Large models |
Key Advantages
Section titled “Key Advantages”For Q-Store Integration
Section titled “For Q-Store Integration”- 10,000× faster checkpointing vs SSD storage
- Dual-parameter encoding perfectly matches quantum gate pairs (RY, RZ)
- Near-zero training overhead (0.00003-0.0002%)
- Async execution with non-blocking I/O
- 100× lower idle power (<50mW vs 5W SSD)
System Benefits
Section titled “System Benefits”- Non-volatile parameter persistence across power cycles
- High endurance for frequent parameter updates
- Native dual-parameter storage for quantum circuits
- Hardware acceleration with FPGA parallel writes
- Error correction with BCH ECC + quantum mitigation synergy
Q-Store Integration Architecture
Section titled “Q-Store Integration Architecture”Q-Store Training Loop ↓┌────────────────────────────────┐│ AsyncPhase2Wrapper │ Background workers│ (Non-blocking interface) │ 4-thread pool└────────────┬───────────────────┘ ↓┌────────────────────────────────┐│ Phase 2 Array (256×256) ││ • 1S1R Crossbar │ Low crosstalk│ • FPGA Controller │ Parallel writes│ • Professional ADC/DAC │ High precision│ • BCH ECC Engine │ Error protection└────────────┬───────────────────┘ ↓┌────────────────────────────────┐│ Dual-Parameter Cells ││ θ: Resistance (Q-Memory Base) │ RY gate angles│ φ: Capacitance (Q-Memory Base)│ RZ gate angles└────────────────────────────────┘Capacity Analysis
Section titled “Capacity Analysis”Model Support
Section titled “Model Support”| Model Size | Parameters | Cells Needed | Phase Support |
|---|---|---|---|
| Tiny (4q×3d) | 24 | 12 | Phase 0 ✓ |
| Small (6q×3d) | 36 | 18 | Phase 0 ✓ |
| Medium (8q×4d) | 64 | 32 | Phase 1 ✓ |
| Large (12q×4d) | 96 | 48 | Phase 1 ✓ |
| X-Large (16q×4d) | 256 | 128 | Phase 2 ✓ |
| XX-Large (20q×5d) | 1,000 | 500 | Phase 2 ✓ |
Hybrid Storage Strategy
Section titled “Hybrid Storage Strategy”Q-Memory implements a two-tier storage architecture:
Tier 1: Q-Memory (Fast, Frequent)
Section titled “Tier 1: Q-Memory (Fast, Frequent)”- Purpose: Quantum layer parameters only
- Frequency: Every epoch or batch
- Latency: <1µs to 3.2µs
- Capacity: 16,384 parameter pairs
- Benefits: 10,000× faster than SSD
Tier 2: SSD (Comprehensive, Infrequent)
Section titled “Tier 2: SSD (Comprehensive, Infrequent)”- Purpose: Full model state (all layers + metadata)
- Frequency: Every 10 epochs
- Latency: 50-100ms
- Capacity: Unlimited
- Benefits: Complete checkpoint preservation
Performance Metrics
Section titled “Performance Metrics”Checkpoint Performance (64 quantum parameters)
Section titled “Checkpoint Performance (64 quantum parameters)”| Backend | Write Latency | Training Overhead | Speedup vs SSD |
|---|---|---|---|
| SSD (Zarr) | 50-100 ms | 0.16-0.33% | Baseline |
| Phase 0 | 6.4 µs | 0.0002% | 7,800-15,600× |
| Phase 1 | 3.2 µs | 0.0001% | 15,600-31,000× |
| Phase 2 | <1 µs | 0.00003% | 50,000-100,000× |
Error Correction Stack
Section titled “Error Correction Stack”Q-Memory implements multi-layer error protection:
- Quantum Layer: Q-Store error mitigation (ZNE, PEC, MEM)
- Encoding Layer: Float32 to dual-parameter conversion
- Analog Layer: BCH(15,11) hardware ECC
- System Layer: Crosstalk suppression (<0.5% with 1S1R)
Combined residual error: <0.2% (dominated by quantum noise, not storage)
Target Applications
Section titled “Target Applications”- Quantum ML Training: Fast parameter checkpointing during training
- Quantum Circuit Optimization: Parameter storage for VQE/QAOA
- Hybrid Quantum-Classical: State persistence across quantum-classical loops
- Model Deployment: Persistent quantum parameter storage