Skip to content

Memory Systems Overview

Q-Memory is a hybrid memory system optimized for quantum ML parameter storage, combining different technologies.

SystemStorage/CellTechnologyEnduranceQ-Store Use Case
SSD (Zarr)32 bits/paramNAND10⁵ writesDefault backend
DRAM1 bitVolatileUnlimitedNot persistent
Phase 05 bitsQ-memory Base10⁹Small models
Phase 110.4 bitsQ-memory tech5×10⁷Medium models
Phase 210.4 bitsQ-memory tech10⁹Large models
  • 10,000× faster checkpointing vs SSD storage
  • Dual-parameter encoding perfectly matches quantum gate pairs (RY, RZ)
  • Near-zero training overhead (0.00003-0.0002%)
  • Async execution with non-blocking I/O
  • 100× lower idle power (<50mW vs 5W SSD)
  • Non-volatile parameter persistence across power cycles
  • High endurance for frequent parameter updates
  • Native dual-parameter storage for quantum circuits
  • Hardware acceleration with FPGA parallel writes
  • Error correction with BCH ECC + quantum mitigation synergy
Q-Store Training Loop
┌────────────────────────────────┐
│ AsyncPhase2Wrapper │ Background workers
│ (Non-blocking interface) │ 4-thread pool
└────────────┬───────────────────┘
┌────────────────────────────────┐
│ Phase 2 Array (256×256) │
│ • 1S1R Crossbar │ Low crosstalk
│ • FPGA Controller │ Parallel writes
│ • Professional ADC/DAC │ High precision
│ • BCH ECC Engine │ Error protection
└────────────┬───────────────────┘
┌────────────────────────────────┐
│ Dual-Parameter Cells │
│ θ: Resistance (Q-Memory Base) │ RY gate angles
│ φ: Capacitance (Q-Memory Base)│ RZ gate angles
└────────────────────────────────┘
Model SizeParametersCells NeededPhase Support
Tiny (4q×3d)2412Phase 0 ✓
Small (6q×3d)3618Phase 0 ✓
Medium (8q×4d)6432Phase 1 ✓
Large (12q×4d)9648Phase 1 ✓
X-Large (16q×4d)256128Phase 2 ✓
XX-Large (20q×5d)1,000500Phase 2 ✓

Q-Memory implements a two-tier storage architecture:

  • Purpose: Quantum layer parameters only
  • Frequency: Every epoch or batch
  • Latency: <1µs to 3.2µs
  • Capacity: 16,384 parameter pairs
  • Benefits: 10,000× faster than SSD
  • Purpose: Full model state (all layers + metadata)
  • Frequency: Every 10 epochs
  • Latency: 50-100ms
  • Capacity: Unlimited
  • Benefits: Complete checkpoint preservation

Checkpoint Performance (64 quantum parameters)

Section titled “Checkpoint Performance (64 quantum parameters)”
BackendWrite LatencyTraining OverheadSpeedup vs SSD
SSD (Zarr)50-100 ms0.16-0.33%Baseline
Phase 06.4 µs0.0002%7,800-15,600×
Phase 13.2 µs0.0001%15,600-31,000×
Phase 2<1 µs0.00003%50,000-100,000×

Q-Memory implements multi-layer error protection:

  1. Quantum Layer: Q-Store error mitigation (ZNE, PEC, MEM)
  2. Encoding Layer: Float32 to dual-parameter conversion
  3. Analog Layer: BCH(15,11) hardware ECC
  4. System Layer: Crosstalk suppression (<0.5% with 1S1R)

Combined residual error: <0.2% (dominated by quantum noise, not storage)

  1. Quantum ML Training: Fast parameter checkpointing during training
  2. Quantum Circuit Optimization: Parameter storage for VQE/QAOA
  3. Hybrid Quantum-Classical: State persistence across quantum-classical loops
  4. Model Deployment: Persistent quantum parameter storage