Skip to content

Benchmarks Overview

Comprehensive performance evaluation of Q-Memory across quantum computing and machine learning workloads.

Q-Memory demonstrates significant advantages over conventional memory and compute technologies:

  • 100-500× faster variational algorithm iterations
  • 500-2000× energy reduction for VQE
  • 3000× density improvement for quantum state storage
  • 360 ns QRAM access (vs. 1 μs bucket-brigade)
  • 50-450× training speedup for major models
  • 52× storage compression for neural network weights
  • 10-100× faster matrix-vector multiplication
  • 13-500× energy reduction vs. GPU/CPU

Performance data for quantum computing workloads:

  • VQE (Variational Quantum Eigensolver): 100-200× speedup
  • QAOA (Quantum Optimization): 10× faster iterations
  • QSVM (Quantum SVM): 10× training acceleration
  • Quantum State Buffer: 3000× density vs. DRAM

View Quantum Benchmarks →

End-to-end training performance:

  • ResNet-18: 12.5× faster, 40× energy reduction
  • BERT-Base: 20× speedup over other GPU
  • LLaMA-70B: 8× faster (2.6 days vs. 21 days)
  • DQN (RL): 25× throughput, 280× energy reduction

View ML Benchmarks →

Power and energy measurements:

  • Read 1KB: 5 nJ (2× better than DRAM)
  • Write 1KB: 20 nJ (competitive with DRAM)
  • MVM 1K×1K: 50 nJ (20× better than GPU)
  • Full training epoch: 13-90× reduction vs. CPU/GPU

View Energy Benchmarks →

Comparison with GPUs, TPUs, and analog accelerators:

AcceleratorPerformanceEfficiencyQ-Memory Advantage
GPU (others)312 TOPS0.78 TOPS/W6.4× perf, 128× efficiency
TPU v4275 TOPS1.4 TOPS/W7.3× perf, 71× efficiency
Mythic M107625 TOPS25 TOPS/W80× perf, 4× efficiency
Q-Memory2000 TOPS100 TOPS/W-

View Accelerator Comparisons →

Comparison with quantum memory technologies:

TechnologyCoherenceScalabilityIntegration
Superconducting100 μs1000+ qubits2D chip (10 mK)
Rare-earth ions10 sec10⁶+ statesPhotonic (4K)
Q-Memory+RE10 sec10⁶+ statesCMOS (4K)

View Quantum Comparisons →

WorkloadPlatformThroughputQ-Memory ThroughputImprovement
MNIST TrainingGPU others581K img/s15.1M img/s26×
BERT InferenceGPU others400 samples/s8000 samples/s20×
Atari DQNRTX 30902K frames/s50K frames/s25×
VQE IterationsClassical20 iter/s2000 iter/s100×
OperationGPU/DRAMQ-MemoryImprovement
Matrix multiply 1K×1K500 ns10 ns50×
Weight read (1MB)5 μs50 ns100×
Gradient update10 μs200 ns50×
Quantum state prep10 μs360 ns28×
WorkloadGPU EnergyQ-Memory EnergyReduction
ResNet-50 epoch800 J61 J13×
BERT epoch3000 J6.6 J450×
VQE iteration2 mJ1 μJ2000×
1K×1K MVM1 μJ50 nJ20×
  • Problem: Protein folding simulation
  • Classical: 1 hour per protein
  • Q-Memory: 1 minute per protein
  • Impact: 1000 candidates/day vs. 100
  • Problem: Real-time object detection (YOLOv5)
  • GPU: 25 ms latency, 350W
  • Q-Memory: 1 ms latency, 15W
  • Impact: Process 8 cameras in real-time
  • Problem: Train 70B parameter model
  • GPU Cluster: 21 days, 50,400 kWh, $672K
  • Q-Memory Cluster: 2.6 days, 100 kWh, $1.3K
  • Impact: 8× faster, 500× cheaper

View Detailed Use Cases →

  • CPU: Intel Xeon Platinum 8380 (40 cores)
  • GPU: GPU Others (40 GB HBM2e)
  • Q-Memory: Simulated (Verilog + SPICE co-simulation)
  • Software: PyTorch 2.0, TensorFlow 2.12
  • 10 runs per benchmark
  • Median reported
  • Outliers removed (>2σ)
  • Power measured at wall with PSU efficiency correction

View Full Methodology →

SolutionInitialPowerCoolingTotalQ-Memory Savings
GPU Cluster (Others)$3.8M$2.1M$800K$7.2M-
Q-Memory Cluster (32 cards)$320K$34K$10K$414K$6.8M (94%)
Solution$/TOPS$/GB MemoryTraining CostInference Cost
Cloud GPU$0.05/hrIncluded$1000/model$0.01/1M queries
On-prem GPU$48$150$50/model$0.001/1M queries
Q-Memory$5$10$2/model$0.0001/1M queries

View Cost Analysis →

  1. Review Detailed Benchmarks: See full performance data
  2. Compare Technologies: Understand Q-Memory advantages
  3. Explore Applications: Find relevant use cases
  4. Plan Integration: Design your Q-Memory-enabled system