Skip to content

Applications Overview

Q-Memory memory technology enables breakthrough performance in quantum computing and machine learning workloads through ultra-high density storage and in-memory analog computation.

Q-Memory provides unique capabilities for quantum computing systems:

  • Quantum State Storage: Store classical representations of quantum states with 3000× better density than DRAM
  • QRAM Implementation: Quantum Random Access Memory with >10⁶ addressable states
  • Hybrid Algorithms: Accelerate VQE, QAOA, and other variational algorithms by 100-500×
  • Parameter Optimization: In-memory analog computation eliminates classical bottleneck
  • VQE: 100-200× faster iterations, 500-2000× less energy
  • QAOA: 10× faster than quantum+DRAM approach
  • QSVM: 10× training speedup, 100× energy reduction

Learn more about Quantum Computing →

Q-Memory revolutionizes ML training and inference through extreme density and analog computation:

  • Neural Network Weight Storage: 52× compression for model parameters
  • In-Memory Matrix Multiplication: 10-100× faster than GPU
  • Training Acceleration: 50-450× speedup for ResNet, BERT, GPT models
  • Edge AI Deployment: Ultra-low power inference
  • ResNet-50 Training: 50× faster, 100× less energy
  • BERT Fine-tuning: 20× faster than other GPUs
  • LLaMA-70B: Train in 2.6 days vs. 21 days on GPU cluster
  • DQN (RL): 25× throughput, 280× energy reduction

Learn more about ML Training →

┌─────────────────────────┐
│ Quantum Processor │
│ (50-100 qubits) │
└──────────┬──────────────┘
┌─────────────────────────┐
│ Quantum-Classical I/F │
└──────────┬──────────────┘
┌─────────────────────────┐
│ Q-Memory Memory System │
│ • State buffers │
│ • Parameter storage │
│ • Analog compute │
└──────────┬──────────────┘
┌─────────────────────────┐
│ Classical Processor │
└─────────────────────────┘
┌─────────────────────────┐
│ Host CPU/GPU │
│ Dataset | Optimizer │
└──────────┬──────────────┘
┌─────────────────────────┐
│ Q-Memory Accelerator │
│ • Weight storage │
│ • Analog MVM │
│ • Gradient compute │
│ • In-place updates │
└─────────────────────────┘
  • 13 bits per cell (8,192 analog levels)
  • 52× compression for neural network weights
  • 3000× density vs. DRAM for quantum states
  • 10 ns matrix-vector multiply (constant time)
  • Zero data movement energy cost
  • Analog physics performs computation
  • 0.4 pJ per bit storage
  • 50 nJ per 1K×1K MVM operation
  • 10-500× reduction vs. GPU/DRAM
  • 50 ns read, 200 ns write
  • 10× faster than sequential digital compute
  • Parallel execution across entire array
  • Data center training clusters
  • Large language model development
  • Computer vision pipelines
  • Reinforcement learning
  • Edge devices (autonomous vehicles)
  • Mobile AI applications
  • Real-time video processing
  • IoT endpoints
  • Quantum state preparation
  • Variational algorithms
  • Quantum chemistry simulations
  • Quantum machine learning
  • Drug discovery
  • Materials simulation
  • Weather modeling
  • Genomics
  1. Understand the Architecture: Learn how Q-Memory stores 13 bits per cell
  2. Review Benchmarks: See performance data for your workload
  3. Explore Use Cases: Find applications similar to your needs
  4. Plan Integration: Design system architecture with Q-Memory