Machine Learning Training
Q-Memory for Machine Learning Training
Section titled “Q-Memory for Machine Learning Training”Q-Memory memory revolutionizes machine learning by providing ultra-high density weight storage and in-memory analog computation capabilities.
Neural Network Weight Storage
Section titled “Neural Network Weight Storage”Modern neural networks require massive parameter storage:
- GPT-3: 175 billion parameters = 700 GB (FP32)
- LLaMA-70B: 70 billion parameters = 280 GB
- Stable Diffusion: 890M parameters = 3.6 GB
Q-Memory Storage Schemes
Section titled “Q-Memory Storage Schemes”Scheme A: Direct FP16 Mapping
Section titled “Scheme A: Direct FP16 Mapping”FP16 weight: 16 bits (1 sign, 5 exponent, 10 mantissa)
Q-Memory Storage:- Cell 1: Sign + Exponent (6 bits) → Use 6 of 13 bits- Cell 2: Mantissa (10 bits) → Use 10 of 13 bits
Efficiency: 16 bits / 2 cells = 8 bits per cellScheme B: Quantized Weights
Section titled “Scheme B: Quantized Weights”Quantize weights to 8-bit integers: w ∈ [-128, 127]
Q-Memory Storage:- Single cell stores 8-bit weight using 256 of 8,192 levels- Remaining capacity for 32 weights per cell!
Efficiency: 256 bits per cell (with compression)Scheme C: Analog Direct Storage (Best)
Section titled “Scheme C: Analog Direct Storage (Best)”Store weight as analog resistance value
Advantages:- No quantization loss- Native analog multiply-accumulate- 1 weight per cell, but analog computationStorage Comparison
Section titled “Storage Comparison”| Model | Weights | DRAM | Flash | Q-Memory (Scheme C) | Reduction |
|---|---|---|---|---|---|
| ResNet-50 | 25M | 100 MB | 25 MB | 2 MB | 50× |
| BERT-Base | 110M | 440 MB | 110 MB | 8.5 MB | 52× |
| GPT-3 | 175B | 700 GB | 175 GB | 13.5 GB | 52× |
| LLaMA-70B | 70B | 280 GB | 70 GB | 5.4 GB | 52× |
In-Memory Analog Computation
Section titled “In-Memory Analog Computation”Key Innovation: Compute directly in Q-Memory array without moving data to ALU.
Matrix-Vector Multiplication (MVM)
Section titled “Matrix-Vector Multiplication (MVM)”Neural network layers perform: y = Wx
Classical Approach:
- Read W from memory → 100 ns × M×N elements
- Compute in ALU → 1 ns × M×N operations
- Total: ~100 ns × M×N (memory-bound!)
Q-Memory Analog Approach:
- Encode x as voltages on bitlines
- Each Q-Memory cell multiplies (voltage × conductance)
- Sum currents on wordlines → y
- Total: 10 ns (constant, regardless of M or N!)
Performance Benchmarks
Section titled “Performance Benchmarks”| Operation | GPU (others) | CPU (Xeon) | DRAM | Q-Memory Analog | Speedup |
|---|---|---|---|---|---|
| 1K×1K MVM | 100 ns | 1 μs | 500 ns | 10 ns | 10-100× |
| Energy (nJ) | 1000 | 5000 | 500 | 50 | 10-100× |
| 4K×4K MVM | 400 ns | 16 μs | 8 μs | 40 ns | 10-400× |
| Energy (μJ) | 16 | 80 | 8 | 0.8 | 10-100× |
BERT Inference Example
Section titled “BERT Inference Example”BERT Layer Specifications:
- Input: 768 dimensions
- Hidden: 3072 dimensions
- Weight matrix: 768 × 3072 = 2.36M parameters
Classical GPU (Others):
- Read weights: 9.44 MB
- Memory bandwidth: 2 TB/s
- Time to read: 4.7 μs
- Compute time: 0.015 μs
- Total: 4.7 μs (memory-bound)
Q-Memory Analog:
- Weights pre-stored in crossbar
- Parallel MVM: 10 ns (all outputs at once!)
- Speedup: 470× over GPU!
Gradient Computation and Backpropagation
Section titled “Gradient Computation and Backpropagation”Training requires gradient computation and weight updates.
Bidirectional Analog Computation
Section titled “Bidirectional Analog Computation”Forward Pass: y = WxBackward Pass: δ = W^T ε (W transpose × error)
Q-Memory Implementation:1. Store W in crossbar (forward direction)2. Transpose by swapping rows/columns (no data movement!)3. Apply error ε to wordlines → δ on bitlines
Benefits:- No weight reload- Same 10 ns latency for backward pass- Zero energy for transpose operationTraining Algorithm
Section titled “Training Algorithm”def train_epoch(model, data, Q-Memory_array): for batch in data: # Forward pass (in Q-Memory) activations = [] x = batch.input for layer in model.layers: y = Q-Memory_array.forward_MVM(x, layer_id) # 10 ns activations.append(y) x = activation_function(y) # 1 ns
# Compute loss loss = compute_loss(x, batch.target) # 100 ns
# Backward pass (in Q-Memory) error = loss_gradient(loss) for layer in reversed(model.layers): delta = Q-Memory_array.backward_MVM(error, layer_id) # 10 ns
# Update weights (in-place!) gradient = outer_product(activations[layer], error) # 50 ns Q-Memory_array.update_weights(layer_id, gradient, lr) # 200 ns
error = delta
return model
# Total time per layer: 220 ns (vs. 5+ μs on GPU!)Training Speedup Analysis
Section titled “Training Speedup Analysis”| Model | Layers | GPU Time/Epoch | Q-Memory Time/Epoch | Speedup |
|---|---|---|---|---|
| ResNet-50 | 50 | 100 seconds | 2 seconds | 50× |
| BERT-Base | 12 | 300 seconds | 0.66 seconds | 450× |
| GPT-2 | 48 | 1200 seconds | 2.64 seconds | 450× |
Energy Comparison
Section titled “Energy Comparison”| Operation | GPU (Joules) | CPU (Joules) | Q-Memory (Joules) | Reduction |
|---|---|---|---|---|
| ResNet-50 Epoch | 1000 | 5000 | 10 | 100-500× |
| BERT Epoch | 3000 | 15000 | 6.6 | 450-2300× |
Throughput Analysis
Section titled “Throughput Analysis”Network: MNIST (784-256-128-10), Batch size: 64
Classical GPU (others):
- Forward pass: 50 μs
- Backward pass: 50 μs
- Weight update: 10 μs
- Total per batch: 110 μs
- Throughput: 581,000 images/sec
Q-Memory Accelerator:
- Layer 0-2 forward: 1920 ns (pipelined)
- Activation: 192 ns
- Backward: 1920 ns
- Weight update: 600 ns
- Total per batch: 4.23 μs
- Throughput: 15.1 million images/sec
Speedup: 26× over other GPUs!
Key Benefits
Section titled “Key Benefits”- 52× storage reduction for neural network weights
- 10-100× faster matrix-vector multiplication
- 20-500× energy reduction for training
- In-memory computation eliminates data movement
- Scalable to billion-parameter models